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ABSTRACT
Context-aware recommendation (CAR) can lead to signif-
icant improvements in the relevance of the recommended
items by modeling the nuanced ways in which context influ-
ences preferences. The dominant approach in context-aware
recommendation has been the multidimensional latent fac-
tors approach in which users, items, and context variables
are represented as latent features in a low-dimensional space.
An interaction between a user, item, and a context variable
is typically modeled as some linear combination of their la-
tent features. However, given the many possible types of
interactions between user, items and contextual variables,
it may seem unrealistic to restrict the interactions among
them to linearity.

To address this limitation, we develop a novel and power-
ful non-linear probabilistic algorithm for context-aware rec-
ommendation using Gaussian processes. The method which
we call Gaussian Process Factorization Machines (GPFM)
is applicable to both the explicit feedback setting (e.g. nu-
merical ratings as in the Netflix dataset) and the implicit
feedback setting (i.e. purchases, clicks). We derive stochas-
tic gradient descent optimization to allow scalability of the
model. We test GPFM on five different benchmark con-
textual datasets. Experimental results demonstrate that
GPFM outperforms state-of-the-art context-aware recom-
mendation methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering
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1. INTRODUCTION
Collaborative Filtering (CF) methods capable of modeling

vast amounts of user data now make it possible for on-line
stores and content providers to recommend items tailored
to a specific user’s interests. Companies are finding that
getting those personalized recommendations right - or even
close - can mean significantly higher user engagement and
sales. This is the driving force behind research on methods
that retrieve relevant items to be recommended to on-line
users. Recommendation is an Information Retrieval problem
whereby the task is to retrieve for a specific user a relatively
small number (5-100) of “relevant” items out of an inventory
of potentially tens of thousands of items.

CF methods predict the preferences of users based on
their collective past consumption behavior, which can be
effectively inferred from the data traces stored in web-logs.
These traces come either in the form of implicit feedback,
that is we know which items a user interacted with, e.g.,
purchased, used, or clicked, etc., or in the form of explicit
ratings e.g. in a 1 to 5 stars Likert scale. The learning of
preference functions in the context of collaborative filtering
using implicit or explicit feedback data can be cast as either
a regression problem where a potential rating is to be pre-
dicted, [8, 29], or a ranking problem where an optimal list
of items is to be computed [20, 26, 30].

Context. In the quest for the perfectly relevant recom-
mendations it is essential to use all the information that is
available and can influence the relevance of an item. This ad-
ditional information that defines the environment in which
a recommendation is provided is often referred to as con-
text [1]. Context could be for example the location where
the user is listening to a song on his/her mobile phone or
the time and weekday of the user-item interaction. Context-
aware recommendations (CARs) can significantly improve
the recommendation relevance and quality, compared to con-
ventional recommendations that are solely based on user-
item interactions [1, 4, 10, 21, 26, 25]. The most successful
approaches in context-aware collaborative filtering are based
on contextual modeling whereby the user-item-context in-
teractions are modeled jointly in some types of factor mod-
els. Two particularly popular classes of factor models for
context-aware recommendation are the Tensor Factoriza-
tion [10, 25] models and the Factorization Machines [21, 19].
Both classes represent the user-item-context interaction as a
linear combination of the latent factors to be inferred from
the data. Building models without this limitation of linear-
ity to better capture the complex interplay between users’



preferences and their contexts is the main goal of our work
in this paper.

Gaussian processes. Gaussian processes (GP) is one
of the most widely used family of stochastic processes for
modeling dependent data. GP-based models can use flex-
ible covariance functions, which are the same as the class
of positive definite kernels used in Support Vector Machines
(SVM), they can thus model very complex functions with-
out restricting them to manually chosen parametric (e.g.
linear, polynomial) forms. GP have become an important
tool for modeling non-linear complex patterns in real-world
settings for which human preferences is a prime example.
While Gaussian processes have been used in conventional
collaborative filtering [5, 7, 15], GPFM is the first GP-based
attempt for context-aware recommendations.

The vast majority of CF methods developed as of today
using latent factors approaches are based on linear models.
In this work we present a powerful non-linear context-aware
collaborative filtering method that is based on Gaussian Pro-
cesses and builds upon past non-linear matrix factorization
methods [16] called Gaussian Processes Factorization Ma-
chines (GPFM):

• GPFM is the first non-linear and non-parametric context-
aware CF method.

• GPFM can seamlessly utilize both implicit and ex-
plicit feedback by changing the kernel of the Gaussian
Process.

• We derive a stochastic gradient descent optimization
procedure which allows GPFM to scale linearly to the
number of user-item-context, GPFM can thus be used
on large-scale industry datasets.

• We extensively test GPFM on 5 benchmark datasets
and compare it to two state-of-the-art context-aware
collaborative filtering methods.

2. RELATED WORK
Factor models in Collaborative Filtering been shown to

perform well in terms of predictive accuracy and scalabil-
ity [2, 13, 23, 8, 30]. Restricted Boltzmann Machines (RBM’s)
[24] have been successfully used in the Netflix prize and could
be seen as some form of nonlinear model since the activa-
tion functions of the units typically are of nonlinear form
(sigmoid, tanh etc.). RBM’s models for CF are currently
restricted to the user-item problem and have not been ex-
tended to context.
Context-aware recommendation (CAR). Early work

in CAR utilized contextual information for pre-processing,
where the context drives data selection, or post-processing,
where the context is used to filter recommendations [1, 4].
More recent work has focused on building models that in-
tegrate contextual information with the user-item relations
and model the user, item and context interactions directly.
Two state-of-the-art approaches have been proposed as of
today, one based on Tensor Factorization (Multivers Rec-
ommendations) [10, 31] and the other on Factorization Ma-
chines (FM) [21]. However, both approaches have been de-
signed exclusively for the rating prediction problem, i.e. for
explicit feedback. TFMAP a ranking based Tensor Factor-
ization methods has been proposed by [25] for implicit feed-
back data.

Note that recommendation approaches have been proposed
to take into account additional information (also referred as
metadata, side information, or attributes) about users or
items, e.g., collective matrix factorization [27], localized fac-
tor models [3] and graph-based approaches [11]. However,
this type of information would go beyond our definition of
“context”, since we refer to context as information that is as-
sociated with both the user and the item at the same time.
Finally, note that a recommended item set from a recom-
mender is regarded as the “context” of user choice in the
work of [34]. However, this type of context is still extracted
from the user-item relations, thus, not in the scope of the
context studied in this paper.

Gaussian processes. Gaussian processes have been used
to model relational data e.g. in [6] data that contains re-
lational information in the form of an undirected graph is
modeled using GP. The model is then applied to classify
web-pages, documents and handwritten digits. A GP model
for modeling multi-relational data that can include undi-
rected graph or bi-partite graph relationships is built in [32]
and tested on Country interactions data and the Movie-
Lens data. Link Analysis models using GP’s have been also
used on collaborative filtering e.g. [35]. Note that none of
the above models is fit for context modeling since they ei-
ther deal with undirected or bi-partite graph type relation-
ships, while also having scalability constrains. A non-linear
method for Matrix Factorization [15] based on GP’s was
shown to outperform standard Matrix Factorization on the
MovieLens data. This method while scalable does not deal
with context, and does only deal with explicit feedback data.
A Bayesian approach to Tensor decomposition (Tucker de-
composition) is introduced in [33]. The method is used in
chemometrics and link prediction in social networks.

3. MODEL DESCRIPTION
In this section we shortly introduce the context-aware rec-

ommendations problem and explain how to represent user-
item-context interactions in the latent feature space. Next
we describe the GPFMs and relate it to other models. Fi-
nally we derive an extension of GPFMs through modifying
the kernel to obtain GPPW, a pairwise preference model,
for learning with the implicit feedback.

3.1 Problem Setting
For ease of exposition, we describe the context-aware rec-

ommendations problem with a running example in mobile
applications (app) recommendation. Let U = {Alice,Bob,
Charlie, . . .} be the set of users and V = {AB,CCS,D4, . . .}
be the set of items. An event is observed when a user
runs an app in the user’s current context (location, time
etc.). For example, we observe that Bob used app AB in
the morning at work 4 times in total and Charlie used
app D4 in the evening at home 11 times in total. Here
there are two contextual factors: time of the day, i.e. C1

= {morning, afternoon, evening} and location, i.e. C2 =
{home,work, public}. Since context is multi-dimensional,
we call these dimensions the contextual factors to avoid con-
fusion. A specific context is a unique combination of differ-
ent contextual factors: e.g. two context values in the exam-
ple are (morning, work) and (evening, home). Let P = |U |,
N = |V |, and Lm = |Cm|, where m = 1, . . . ,M and M is
the number of contextual factors (i.e. the dimension of con-



text). We reserve the subscripts i, j, c1, . . . , cM for indexing
the users, items, and contextual factors, respectively.

We represent each observation as a tuple of (user, item,
context, utility). For instance, the two events in the above
example correspond to the tuples (Bob,AB, (morning,
work), 4) and (Charline,D4, (evening, home), 11). Note that
the data in this example is typically considered as implicit
feedback. Our problem description, however, applies to both
the implicit and explicit feedback settings so we use the term
utility to enclose both scenarios. Given all observed inter-
actions, the goal of context-aware recommendations is to
predict the utility of items in different contexts, which can
be used for e.g. to construct an ordered list of items to
recommend to the users.

3.2 Utility as a Function of Latent
Representations

Since our framework is based on the latent factors ap-
proach, in this section we define how to transform an ob-
servation into its latent representation. Let the user i, item
j, and contextual factor cm be represented by hidden d-
dimensional real-valued feature vectors ui, vj , and vcm , re-
spectively. Note that we abuse the notation to avoid using
different symbols for the item and contextual factors and
instead identifying the two based on their subscripts (j for
item, cm for contextual factor). Conceptually the roles of
item and contexts are equivalent so this should not be a
problem.

We define a transformation of a pair of (item, context) as:

t :V × C1 × . . .× CM →RD (1)

t(j, c) =[vT
j ,v

T
c1 , . . . ,v

T
cM ]T , c = (c1, . . . , cM )

where D = (M+1)d is the dimension of the latent represen-
tation, (d is the dimension for each individual item, context
factor vectors) i.e., the latent representation is a stacked
column vector of the feature vectors of the item and con-
textual factors. The mapping between an observation and
its transformed representation is one-to-one so we will use
them interchangeably henceforth.

Our user-centric approach assumes that, for any given user
i, the utility of a pair of item and context (j, c), is a function
of the corresponding latent representation, fi(t(j, c)). The
form of the utility function can be freely chosen, and dif-
ferent forms lead to different models as discussed in Section
3.4.3 where we connect different latent factors methods. In
this paper we model the utility function using the powerful
Gaussian Process (GP) framework which is reviewed in the
next section.

3.3 Gaussian Processes (GP)
We briefly review GP, more details can be found in e.g.

[18]. A GP is specified by a mean function m(x) and a
covariance function k(x,x′;θ) parametrized by θ, where
x and x′ ∈ RD. A Gaussian process prior defines a distri-
bution over a real-valued function f(x) if, for any collection
X = {xn}Nn=1, the set of function values f = {f(xn)}Nn=1

has the multivariate Gaussian distribution,

p(f |X) = N (f ;m,K),

where m = {m(xn)}Nn=1 and the covariance matrix K is the
values of the covariance function evaluated between all pairs

of xn,xn′ ∈ X, i.e. Knn′ = k(xn,xn′). We write the GP as
f(x) ∼ GP(m(x), k(x,x′;θ)).

An example of a mean function is m(x) = 0, which is a
typical assumption in GP models. An example of a covari-
ance function is the popular RBF kernel,

k(x,x′;θ) = s2 exp

[
− 1

2l2
(x− x′)T (x− x′)

]
, (2)

where θ = {s, l} is called the covariance hyperparameters, s
is known as the signal variance and l the length-scale. Us-
ing GP as a prior means that, a priori, we expect that the
function values are correlated. The correlation depends on
the similarity among the inputs. This makes GP an attrac-
tive choice to model the utility function in recommendations
since similarity-based models, such as the neighborhood ap-
proach, have been shown to be effective for collaborative
filtering [12].

3.4 Gaussian Process Factorization Machines
Having introduced GPs, we now describe the Gaussian

Process Factorization Machines (GPFMs) for context-aware
recommendations. Let Xi be the matrix of all latent repre-
sentations of the observations of user i and yi be the corre-
sponding observed utilities. Let X = {Xi}Pi=1. We use bold
capital letters to denote matrices, bold letters for vectors,
and regular letters for scalars.

The utility of each user is a function over the latent rep-
resentations, therefore we will be operating exclusively on
the space RD of X. We place independent GP priors for the
utility function of each user i, i.e. fi(x) ∼ GP(0, k(x,x′;θi))
where x and x′ ∈ RD and θi are the covariance hyperpa-
rameters unique to user i. Since Xi is a collection of inputs
in X, by the definition of GPs we have:

p(fi|Xi,θi) = N (fi;0,K
i), (3)

where fi = {fi(xz)}Ni
z=1 is the range of fi over xz ∈ Xi,

Ni = |Xi|; Ki is the Ni × Ni covariance matrix (of user i)
with elements Ki

z,z′ = k(xz,xz′ ;θi) for z, z′ = 1 . . . Ni. The
complete prior is thus given by:

p(f1, . . . , fP |X,θ) =

P∏
i=1

N (fi;0,K
i), (4)

where θ = {θi}Pi=1.
For any observation (i, j, c, y), it is unlikely that the utility

value fi(x = t(j, c)) is exactly the same as the actual utility
y. To account for this presence of noise we use the standard
iid Gaussian likelihood for an observation:

p(yiz|fi(xz), σi) = N (y; fi(xz), σ2
i ), (5)

where σi is the noise hyperparameter unique to user i and
yiz is the z-th element of the vector yi.

The complete likelihood of all the observations is:

p(y1, . . . ,yP |f1, . . . , fP ,X,σ) =

P∏
i=1

Ni∏
z=1

N (yiz; fi(xz), σ2
i )

=

P∏
i=1

N (yi; fi, σ
2
i I), (6)

where I is the identity matrix and σ = {σi}Pi=1.
The GPFM model is specified by the prior in Equation

4 and the likelihood in Equation 6, and is thus a Bayesian



model. Next we discuss some of the covariance functions
that can be used with the GP priors.

3.4.1 Covariance Functions for GPFM
The first covariance function we consider is the RBF func-

tion defined in Equation 2. Recall that the transformation
x = t(j, c) is a concatenation of the individual latent vec-
tors vj and vcm ,m = 1 . . .M , hence we can rewrite the RBF
function (say, for the user i) as:

k(xz,xz′ ;θi) = k(vj ,vj′)

M∏
m=1

k(vcm ,vcm′ ) (7)

where

k(vj ,vj) = s2i exp

[
− 1

l2i
(vj − vj′)

T (vj − vj′)

]
k(vcm ,vcm′ ) = exp

[
− 1

2l2i
(vcm − vcm′ )

Tvcm − vcm′ )

]
,

and θi = {si, li}. Notice that the kernels k(vj ,vj) and
k(vcm ,vcm′ ) are also RBF. Hence the RBF kernel of GPFM
has a special form: it is the product of the RBF covariances
of the item and contextual factors.

Another popular kernel is the linear covariance defined as,

k(xz,xz′) = xT
z xz′ = vT

j vj′ +

M∑
m=1

vT
cmvcm′ , (8)

hence the linear kernel in GPFM has the special form of the
sum of the linear kernels of the item and contextual factors.

3.4.2 Accounting for Biases in Recommendations
Bias is a well-known phenomenon in recommendations,

e.g. some users always give high ratings or some items al-
ways receive high scores. To account for this, we allow each
user, item, and contextual factor to have a latent bias bi,
bj , and bcm ,m = 1 . . .M , respectively.1 For each user i, we
define a bias function that absorbs its bias in addition to the
bias of an observation (j, c):

mi(j, c) = bi + bj +

M∑
m=1

bcm , (9)

Replacing the standard zero-mean GP prior over the utility
functions (Equation 4) with mi(·) we get the new GPFM
prior that accounts for bias:

p(f1, . . . , fP |X,Xbias,θ) =

P∏
i=1

N (fi;mi,K
i), (10)

where Xbias = {Xbias
i }Pi=1 with Xbias

i the latent bias corre-
sponding to the observations of user i (similar to Xi) and
mi is the values of mi(·) evaluated at Xbias

i .

3.4.3 Relation to other Models
The most closely related model to GPFM is the proba-

bilistic matrix factorization (NPMF) [15], which is a non-
linear generalization of matrix factorization [28] based on
GPs. Indeed, GPFM subsumes NPMF as a special case
when there is no context, no bias and only explicit feedback
data. Another class of popular factorization models is the

1Again we abuse the notations to avoid using different sym-
bols.

Factorization Machines [19]. Using the same notations as in
our problem setting, FM defines the utility function of user
i given item-context (j, c) as,

fi(t(j, c)) =bi + bj +

M∑
m=1

bcm + vT
i (vj +

M∑
m=1

vcm)

+ vT
j

M∑
m=1

vcm +

M−1∑
m=1

M∑
m′=m+1

vT
cmvcm′ ,

where vi ∈ Rd is the latent vector of user i. The term
involving the latent biases is called the unary interaction
in FM. This unary interaction is exactly the mean function
mi(j, c) of the GP prior of user i. The remaining pairwise
linear combinations of the user, item, and context latent
features are known as the 2-way interactions in FM. GPFM
replaces this linear interaction with a non-linear function by
using a GP prior with covariance function over the latent
feature space. Hence GPFM can be seen as the non-linear
generalization of FM models of order 2.

Notice that the utility functions in FM are parametric
where the latent features vi can be seen as the weights in
a linear regression model. In contrast, the utility functions
in GPFM are non-parametric (i.e. having no parametric
formula).

3.5 Pairwise Comparison for Implicit Feedback
We now present a variant of GPFM for personalized rank-

ing with implicit feedback. The utility here is not explicitly
expressed by users but is in the form of implicit behaviour
(e.g. user opening a website or purchasing an item). A
typical approach to implicit feedback has been to cast the
observed interactions as having positive utility, say 1, and
all non-observed interactions as having negative utility, say
-1. However, as pointed out in [20], this causes an underes-
timation problem e.g. for ranking, due to the much larger
number of irrelevant (negative) items used for training. In
[20], Rendle et al. addressed this problem by optimizing
a pairwise comparison (context-agnostic) model. We take a
similar approach to build a GPFM-based pairwise preference
model which we call GPPW.

3.5.1 Latent Representation of Paired Comparisons
We start by formulating a latent representation of a paired

comparison similar to section 3.2. A paired comparison for
a given user i is denoted as (j1, c1) >i (j2, c2), which says
the user has higher utility for item j1 in context c1 than
item j2 in context c22. This comparison is expressed in the
latent space via the transformation,

t2 : V × C × V × C →R2D (11)

t2(jc1, jc2) = [t(jc1)T , t(jc2)T ]T

where jc is the short notation for (j, c), e.g jc1 = (j1, c1).

3.5.2 Pairwise Preference Function as a GP
Following the work in [7, 20] which define the paired com-

parison as the difference in utility, we define the pairwise
preference function of user i, gi : R2D → R as,

gi(x1,x2) = fi(x1)− fi(x2), (12)

2We can formulate the comparison also as the preference of
i for j1 over j2 given a same context, but it is less general.



where x1 = t(jc1), x2 = t(jc2), and (x1,x2) = t2(jc1, jc2).
From the above and fi ∼ GP(0, k(·, ·)) we can show that gi
is also a GP with covariance function:

kpref ((x1,x2), (x′1,x
′
2)) = Cov[gi(x1,x2), gi(x

′
1,x
′
2)]

= Cov[fi(x1)− fi(x2), fi(x
′
1)− fi(x′2)]

= k(x1,x
′
1) + k(x2,x

′
2)

− k(x1,x
′
2)− k(x2,x

′
1)

This preference kernel has desirable properties for prefer-
ence learning, including anti-symmetry and transitivity [7].
Specifically, this means that the functions generated from
the kernel satisfy: gi(x1,x2) = −gi(x2,x1) and gi(x1,x3) >
0 if gi(x1,x2) > 0 and gi(x2,x3) > 0.

3.5.3 The Pairwise Preference Model (GPPW)
Having derived the preference function and its kernel based

on the utility function over items, we now describe the pair-
wise preference model. Since the user utility functions fi
are independent GPs a priori, the pairwise preference func-
tions are also independent GPs. The prior of the pairwise
preference model is thus

p(g1, . . . ,gP |Xpair,θ) =

P∏
i=1

N (gi;0,K
i
pref ), (13)

where Xpair = {Xpair
i }Pi=1 and each Xpair

i is the latent
representations of the paired comparisons of user i; gi =
g(Xpair

i ) is value of gi evaluated at all points in Xpair
i ; Ki

pref

is the covariance matrix of the preference kernel kpref (·, ·)
evaluated at Xpair

i . Note that the GPPW preference kernel
is induced from the GPFM utility kernel and thus they share
the same set of hyperparameters.

For the likelihood, we use standard iid Gaussian noise
model leading to

p(ypair
1 , . . . ,ypair

P |g1, . . . ,gP ,X, σ̃) =

P∏
i=1

N (ypair
i ;gi, σ̃

2
i I),

(14)

where ypair
i is the set of observed paired comparisons cor-

responding to Xpair
i . Note that the noise hyperparameter

σ̃ = {σi} is unrelated to that of the utility model.
The analogy between the GPFM and the GPPW can be

seen by inspecting their prior and likelihood definitions in
the equations 4, 6, 13, and 14. Although sharing the same
set of underlying latent utility functions, GPFM models
item-based observations whereas GPPW models pair-based
observations. Effectively, in terms of learning, GPFM fits a
model which aims to score individual items right. GPPW
on the other hand fits a model which seeks to order items
correctly. As will be seen in the experiments, these different
learning goals can lead to substantial difference in perfor-
mance, for example in learning to rank.

While common in many ranking models our application
of the pairwise preference model in this paper is novel with
respect to previous applications in the GP literature. In par-
ticular, we use GPPW to learn the utility functions whose
values can be used to produce an ordered list efficiently.
In contrast, traditional paired comparison GP models (e.g.
[5, 7]) are used to predict or classify, given two items, which
one is preferred by a user. Such comparisons cannot be used

to trivially create a ranked list of items for recommenda-
tions. Furthermore, these conventional approaches require
observed item features and thus do not belong to the class
of latent factors model like GPPW.

3.5.4 GPPW for Implicit Feedback
To apply GPPW to the implicit feedback setting, we need

to convert the implicit feedback by each user to his/her set of
pairwise comparisons. This can be done simply by sampling
the negative/irrelevant feedback and creating a pair jc1 >i

jc2 for every jc1 in the positive / relevant feedback and every
jc2 from the rest (i.e. the negative/irrelevant feedback).
Although this may lead to quadratic number of pairs (per
user), our experiments in Section 5.3 suggest that GPPW
can be effective using only the same number of observations
as GPFM.

4. INFERENCE
In this section we derive inference for GPFM, which in-

cludes learning of the hyperparameters and latent features
and making predictions for unseen items. Inference for GPPW
can be done similarly thanks to the analogy of the two mod-
els.

4.1 Learning Latent Features and Covariance
Hyperparameters

Although a Bayesian model, fully Bayesian inference of
GPFM is not feasible for large-scale data. The standard
approach in GP is to use the empirical Bayes (also known
as type-II maximum likelihood) approach. This means opti-
mizing the marginal likelihood of the model with respect to
the latent features and covariance hyperparameters.

The marginal likelihood is obtained by integrating out
(hence the term marginal) the utility function values fi,
which is given by:

p(y|X,Xbias,θ,σ) =

∫
p(y|f ,σ)p(f |X,Xbias,θ)df ,

where f = {fi}Pi=1 and y = {yi}Pi=1. Substituting the
prior p(f |X,Xbias,θ) (equation 10) and the likelihood p(y|f)
(equation 6) into the above we get,

p(y|X,Xbias,θ,σ) =

∫ P∏
i=1

N (yi; fi, σ
2
i I)N (fi;mi,K

i)dfi

=

P∏
i=1

∫
N (yi; fi, σ

2
i I)N (fi;mi,K

i)dfi

=

P∏
i=1

N (yi;mi, σ
2
i I + Ki).

This gives the negative log marginal (with the conditioned
variables omitted for brevity):

− log p(y) = −
P∑

i=1

logN (yi;mi, σ
2
i I + Ki), (15)

which is the sum of the (negative log) marginals of all users.
Each user marginal likelihood is given by:

− logN (yi;mi,K
i
y) =

1

2
(yi −mi)

T (Ki
y)−1(yi −mi)

+
1

2
log |Ki

y|+Ni log 2π (16)



where Ki
y = σ2

i I + Ki and Ni is the cardinality of yi.

4.1.1 Stochastic Gradient Descent (SGD) Learning
With the (negative) log marginal given in equation 15,

learning becomes an optimization problem with the opti-
mization variables being the set {X,Xbias,θ,σ}. Since the
objective − log p(y) decomposes into the sum of the neg-
ative log marginals, we can use stochastic gradient descent
with respect to users for training with GPFM. In recommen-
dations, the number of observations for a user is relatively
small. Thus, this decomposition across users makes GPFM
feasible for large-scale datasets as we will see in Section 4.1.3.

We iterate over each user and update its parameters {Xi,
Xbias

i ,θi, σi} according to the following update rule:

un+1 = un + ∆n (17)

where ∆n = h∆n−1 + α
d logN (yi;mi,K

i
y)

dun
,

for u ∈ {Xi,X
bias
i ,θi, σi} at the nth iteration. In the above,

α is the learning rate and h is the momentum term which
allows a large range of α to be used with SGD.

4.1.2 Derivatives
In this section we find the derivatives of the individual

marginal of each user with respect to its parameters. As
can be seen from Equation 15, the marginal depends on the
form of the covariance function. Here we derive for the RBF
covariance function as it generates non-linear functions. To
avoid notational clutter, we drop the dependent on subscript
i, but the derivation applies to all users.

First, the derivatives of the RBF covariance with respect
to the latent features x are given by:

∂k(x,x′;θ)

∂x
= k(x,x′;θ)

∂(− 1
2l2

(x− x′)T (x− x′))

∂x

= − 1

l2
k(x,x′;θ)(x− x′). (18)

Derivatives of k(x,x′;θ) with respect to the θ can be simi-
larly computed. Note that both of the latent features x and
the covariance hyperparameters θ are parameters of the ker-
nel. This is contrary to standard GP where the inputs are
observed and thus are constant in the kernel function.

The gradient of the marginal with respect to any u ∈
{x,θ} is composed of two parts (see Equation 16):

∂ log |Ky|
∂u

= tr

[
K−1

y
∂K

∂u

]
(19)

∂(y −m)TK−1
y (y −m)

∂u
= −(y −m)TK−1

y
∂K

∂u
K−1

y (y −m),

(20)

where it should be emphasized again that y,m,Ky are that
of user i with the subscript dropped.

The gradient with respect to any of the latent bias u is
given by:

∂(y −m)TK−1
y (y −m)

∂b
= 2K−1

y (m− y). (21)

4.1.3 Computational Complexity
To simplify the analysis, we make the crude assumption

that each user has the same number of observations i.e. Ni ≈

B/P = a, where B is the total number of observations.
The main cost in computing the marginal and its derivatives
(for each user) is the cost of matrix inversion which requires
O(a3). Once the inverse is calculated, the cost of taking
derivatives of all parameters of i is O(a2 × a(Md + d + 2),
where the a2 factor is due to the matrix multiplication and
a(Md + d + 2) is the upperbound on the total parameters
of the user. The total cost is thus O(Pa3 + Pa3Md) =
O(Ba2Md). In real world recommendations, the data is
very sparse while P is very large, hence a is typically small.
The number of contextual factors M is usually less than
20. The latent dimension d can be much smaller than that
used in linear latent factors methods (e.g. d=3) since the
GP model allows a higher modeling capacity. Hence the
computational complexity of GPFM is linear in the number
of total observations B, as we later demonstrate empirically
in Section 5.4. The complexity of GPPW is also linear in
the number of paired comparisons as the computation is the
same as GPFM, except that the GPPW kernel requires 4
evaluations of the GPFM kernel.

4.2 Predictive Distribution
Once the latent features X and covariance hyperparame-

ters θ are learned, they can be used to make prediction for
unseen pairs of (item, context). Since GPFM and GPPW
use the same underlying set of utility functions, the predic-
tive distribution is the same with respect to the goal of pre-
dicting utility for items. Given a test observation (j∗, c∗),
we first use the transformation to convert it to its latent
representation x∗ = t(j∗, c∗). Prediction of the utility for
(j∗, c∗) for user i then follows standard GP regression [18]
which is,

p(fi(x∗)|Xi,θi,yi) = N (µ∗, s∗) (22)

where

µ∗ = k(x∗,Xi;θi)(K
i
y)−1yi = ((Ki

y)−1k(x∗,Xi;θi))
Tyi

s∗ = k(x∗,x∗;θi)− k(x∗,X;θi)(K
i
y)−1k(X,x∗;θi).

Notice that the prediction mean µ∗ has the intuitive in-
terpretation of being a weighted linear combination of all
seen utilities of user i. The prediction variance s∗ expresses
the confidence of the model about the (item, context) being
predicted. This is an additional advantage of GPFM and
GPPW over the non-Bayesian counterpart as, for example,
one can use the variance to decide whether or not to recom-
mend an item to the user.

5. EVALUATION
We evaluate the performance of GPFM against two state-

of-the-art methods in context-aware recommendations. First
we describe the datasets in details. We then evaluate GPFM
for explicit feedback and GPFM pairwise for implicit feed-
back separately. We conclude the section with additional ex-
periments demonstrating the linear scalability of our SGD-
based learning algorithm. Our implementation is available
at http://trungngv.github.io/gpfm.

5.1 Datasets
We use 5 contextual datasets, two of which are in the food

domain, two in the movie domain, and one in the mobile
applications domain. The statistics of all datasets are given
in Table 1 where the first 4 datasets are explicit and the

http://trungngv.github.io/gpfm


Table 1: Dataset statistics (#obs is the number of
observations and scale is the range of ratings in the
datasets).

name #users #items #contexts #obs scale
adom 84 192 5 1464 1 - 13

comoda 121 1232 12 2296 1 - 5
food 212 20 2 5554 1 - 5
sushi 5000 100 7 50000 0 - 4
frappe 953 4073 4 61465 1

last dataset frappe is implicit. For frappe, the number of
observations is the number of user-item-context interactions.

5.1.1 Explicit Feedback Datasets
The first explicit dataset is adom [1] which contains 1464

ratings by 84 college students for 192 movies. The students
were asked to rate the movies on a scale from 1 (hate) to 13
(absolutely love) and they also filled out information about
the context of the watching experience. Following the work
in [10, 21] we use 5 contextual factors: companion, day of
the week, if it was on the opening week- end, season, and
year seen.

The second dataset is comoda [14] which contains 2296
ratings of 1232 movies by 121 users. It is interesting to note
that data acquisition occurred immediately after a user fin-
ished watching a movie. As a result, the ratings may be
more reliably captured in this dataset compared to oth-
ers. The user submitted a rating for the movie and also
provided the context of the experience: time of the day,
day type (working day, weekend, holiday), season, location,
weather, social (companion watchers), ending and dominant
emotions, mood, physical condition, discovery (self-selected
or suggested by others), and interaction (first, n-th).

The third dataset is food [17] which contains 5554 rat-
ings by 212 users on 20 food menus. The users were asked
to rate the menus while being in three different levels of
hunger. They did so while being either in a real or supposed
situation (i.e. the subjects imagined that they were in a
specific state of hunger, which may differ from the actual
state). We found that the original dataset is contaminated
with conflicted ratings where a tuple of (user, item, con-
text)) corresponds to two outputs (ratings) that differ by at
least 2. There are 804 such inputs in total and for each of
them we replace the conflicted ratings with their average.
This results in a clean dataset of 5554 observations from the
original 6360 observations.

The fourth dataset is sushi [9] which contains 50,000 rat-
ings of 100 different types of sushi by 5000 Japanese users.
Each user was asked to score a different set of 10 sushi on a
scale from 0 to 4. We use the following contextual factors:
style, major group (seafood or otherwise), minor group (12
in total), heaviness/oiliness in state, popularity (how fre-
quently people eat the sushi), price, and availability in shops.
Despite the contextual information coincides with the item
attributes, we use this dataset to verify the scalability of
our model due to the lack of large-scale explicit contextual
datasets.

5.1.2 Implicit Feedback Datasets
The first implicit feedback dataset we use is from the mo-

bile app recomender frappe which contains 61,465 implicit
feedback of 4073 Android applications by 953 users. The
recommender logs the app usage counts by a user in differ-
ent contexts. The observations with count of at least one
is regarded as positive / relevant feedback. The following
4 contextual factors are used: time of the day, day of the
week, location (unknown, home, workplace), and weather.

In addition to frappe, we created two more datasets by
converting food and comoda into implicit feedback. This is
done by treating all observations with a rating higher than 3
(for food) and 4 (for comoda) as the positive feedback, i.e.
users like the food or movie. This results in 2,882 implicit
observations for food and 1526 observations for comoda.
To avoid over-sparsity in the case of comoda (due to the
large number of contextual factors), we use only two, ”the
ending”, ”dominant emotions” and ”mood factors” in the ex-
periments.

5.2 Evaluation of GPFM for Explicit Feedback
In this section we describe our experimental protocols to

evaluate GPFM for explicit feedback and discuss the results.

5.2.1 Experimental Setup
We use the 4 explicit feedback datasets detailed in the pre-

vious section. We compare GPFM (gpfm) with two state-of-
the-art methods in context-aware recommendations namely
factorization machines (fm3) [21] and tensor decomposition
(multiverse) [10]. Similar to [21], we also compare with stan-
dard matrix factorization (mf ) which does not use any con-
textual information. Finally, we use a naive predictor (con-
stant) which predicts for every user the mean of his ratings.

We split each dataset into 5 folds and repeat the exper-
iments 5 times using one fold as the test set and the re-
maining 4 folds as the training set. For all methods (except
constant) we empirically tune the parameters using one of
the 5 folds as the validation set. We then fix the tuned pa-
rameters when running experiments with the other 4 folds.

For gpfm with SGD training, we find that a momentum
of 0.9 and a fixed learning rate of 0.5× 10−4 seems to work
well for most datasets4. The optimization procedure typ-
ically converges after 10 epochs (an epoch is a single pass
through the dataset). The latent features are initialized by
random sampling from the normal distribution N (0, 10−4),
the covariance hyperparameters from the standard normal
distribution, and the noise hyperparameter initialized to 1.
We find that the RBF kernel always outperform the linear
kernel so we use RBF in all of the experiments.

The task we are evaluating is prediction of utilities (rat-
ings) of unseen items and contexts for users. We use four
evaluation metrics: mean absolute error (MAE), root-mean-
square error (RMSE), Normalized Discounted Cumulative
Gain of top 10 items (NDCG@10), and Expected Recipro-
cal Rank also of top 10 items (ERR@10). Note that while
MAE and RMSE measure the overall prediction quality of a
model, ERR and NDCG are better suited for ranking as they
place higher reward for the top items in a recommended list
(typically consists of 5-10 items only). For all datasets, the

3We use the libfm implementation available at libfm.org.
Note that it only implements a regression model.
4We also experiment with decaying the learn rate after every
iteration but this seems to have marginal effects.



Table 3: Performance comparison on the 4 explicit
datasets in terms of ERR@10, higher is better

method adom comoda food sushi
gpfm 0.0809 0.1923 0.1317 0.0355
fm 0.0931 0.1905 0.1055 0.0086

multiverse 0.0597 0.0214 0.0736 0.0008
mf 0.0436 0.1371 0.0900 0.0203
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Figure 1: Performance comparison on the 4 explicit
datasets in terms of NDCG@10, higher is better.

performance is averaged over the 5 different folds. The re-
sults are statistically significant and the variances are small
so not reported.

5.2.2 Results
The performance comparison of all methods are shown

in Table 2 for MAE and RMSE, Table 3 for ERR@10, and
Figure 1 for NDCG@10.

First we compare the context-aware and context-agnostic
methods. It is clear that both gpfm and fm significantly
outperform mf on all datasets and on metrics (with the ex-
ception of mf slightly outperforms fm on the sushi dataset.
This confirms the benefits of using contextual information in
recommendations, as was previously demonstrated in CAR
[10, 21]. Multiverse outperforms mf on the adom and food
but has poor performance on comoda and sushi where it
suffers because of the high dimensionality of context in those
two datasets. Meanwhile, mf does only slightly better than
the naive constant predictor. This can be explained by the
fact that users may have different utility for the same item
under two different contexts. Failing to account for this user-
item-context interaction leads to the low predictive quality
of standard matrix factorization.

Next we compare the two best context-aware methods:
gpfm and fm. The overall performance measure in terms
of MAE and RMSE (Table 2) shows that gpfm does signif-
icantly better than fm on all of the datasets except adom.
For example, on comoda, the MAE and RMSE by gpfm are
smaller (better) than that of fm by 11% and 13%, respec-
tively. Similarly, the MAE and RMSE differences are 6%
and 2% for food and 1% and 3% for sushi respectively. The

superiority of gpfm over fm is further reflected in terms of
ERR in Table 3 and NDCG in Figure 1. This also demon-
strates that GPFM gives much better predictions for the
items near the top of a ranked recommendation list com-
pared to the state-of-the-art methods. Thus, the experiment
results confirm that modeling user-item-context interaction
nonlinearly with GPFM leads to substantial performance in
context-aware recommendations.

5.2.3 Context that Matters
In context-aware recommendations, different contextual

factors are likely to influence the user-item-context interac-
tions at varying degrees. Can we identify which context is
most important or relevant to the users? To answer this
question, we perform a qualitative analysis with the co-
moda dataset. We chose comoda for two reasons: it has
the highest context dimension and also has the most natu-
ral, non-intrusive data acquisition process. We run exper-
iments on this dataset using the same experimental setup
aforementioned, except that only one of the contexts is used
at a time. The results show that the two most influential
contextual factors are ending and dominant emotions – gpfm
using those two factors alone gives an MAE of 0.7119 and
a RMSE of 0.8953. This turns out to be not too surprising:
the ratings of user for movies are typically conditioned on
their emotions triggered from watching the movies. Perhaps
one implication is that movie recommendation can be im-
proved by taking into account the mood/emotional state of a
user, which was the focus of a recent challenge in CAR [22].
While it may not be practical to obtain the users’ emotions
in the same way as in [14], social medias such as Twitter,
Facebook, or online movie review websites may be used to
collect similar information.

5.3 Evaluation of GPPW for Implicit Feedback

In this section we describe our experimental protocols for
evaluation of GPPW for the implicit feedback datasets and
discuss the results.

5.3.1 Experimental Setup
We use the 3 implicit feedback datasets described in Sec-

tion 5.1.2. Since we are comparing a pairwise preference
model (GPPW) with item-based models (GPFM and FM),
we must make sure that the comparison is fair.

We use 70% of the relevant feedback in each dataset for
training. Let say there are N positive instances, we ran-
domly sample N negative instances, one for each positive
item of a user under a given context. The relevant obser-
vations are given a rating of 1 and the sampled irrelevant
observations are given a rating of -1. These 2N observa-
tions are then used for training with GPFM and FM, just
like in the explicit setting.

The 2N observations are also used to create the paired
comparisons for GPPW training. Specifically, consider user
i in context c, let j+ be one of the relevant items and j− its
sampled irrelevant counterpart. The items j+ and j− are
used to create two pairs, (j+, c) >i (j−, c) and symmetri-
cally (j−, c) <i (j+, c). This leads to the exact training size
of 2N for GPPW. Note that if the number of relevant items
is n for (i, c), the actual number of comparisons is 2n2: ev-
ery j+ induces 2n pairs since j+ is preferred over all of the
n sampled irrelevant items. This can be a potential problem



Table 2: Performance comparison on the 4 explicit datasets in terms of MAE and RMSE, smaller is better.
adom comoda food sushi

method mae rmse mae rmse mae rmse mae rmse
gpfm 1.3255 1.9136 0.7000 0.8885 0.7358 0.9603 0.9103 1.1640
fm 1.2315 1.7434 0.7836 1.0245 0.7609 0.9798 0.9195 1.1994

multiverse 1.4601 2.0412 1.4812 2.1174 0.8336 1.043 0.9544 1.2145
mf 2.2378 2.9836 0.8746 1.1316 0.8845 1.1116 0.9187 1.1970

const 2.2796 2.9206 0.8370 1.0360 0.8993 1.1247 1.0079 1.2498

for training GPPW. However, our experiments suggest that
the training size needs only be the same as GPFM and FM
for it to be effective.

We carry out the same sampling procedure to create val-
idation sets (10%) and test sets (20%), except that the ra-
tios of irrelevant to relevant are 5, 10, and 20 for food,
comoda, and frappe, respectively. The sampling is done
such that the items in training, validation, and test sets are
non-overlapped. We use the validation sets to empirically
tune the parameters of all methods, afterward the experi-
ments are run 5 times using the tuned parameters.

The task we are evaluating here is prediction of utilities
(ratings) for items given a context for the users. We use
two ranking evaluation metrics: ERR@10 and Mean Aver-
age Precision (MAP@10). For all methods, the predicted
utility values are used to create ranked lists which are then
scored by the metrics. Note that the ERR and MAP are
averaged over user given context, as this was how the data
is generated.

5.3.2 Results
The performance of all methods on the 3 implicit feedback

datasets is shown in Table 4. It can be seen than GPPW
significantly outperforms both GPFM and FM on the food
and comoda dataset while having comparable ERR@10 and
MAP@10 on the frappe dataset. Recall that GPPW uses
the same set of latent utility functions as GPFM, only op-
timizing a different likelihood model. The results therefore
suggest that learning with paired comparisons can lead to
substantial improvement for ranking compared to optimiz-
ing item-based scores. Furthermore, as stated in the pre-
vious section, GPPW achieves this performance using the
same training size as GPFM. This suggests that GPPW can
be more effective than GPFM in the implicit feedback set-
ting with little overhead in computation.

5.4 Scalability
Finally we verify the linear computational complexity of

the stochastic gradient descent learning for GPFM. To this
end, we measure the running time against the amount of
data used for training and the dimensionality of the la-
tent features. We normalize the measured time by the time
needed to train with 100% of the data and with the latent
dimension d = 8. The normalized training time per epoch is
shown in Figure 2, where the linear correlation between the
training size and time can be readily observed. Since the
number of optimization variables increases linearly with d,
the training time also scales with d, but the overall computa-
tional complexity is still linear with respect to the total num-
ber of observations. Note that one iteration on the frappe
dataset on a MATLAB implementation took approximately
one minute.
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Figure 2: GPFM training time per iteration for the
frappe dataset as a function of training size and di-
mensionality of latent features.

6. CONCLUSIONS
We presented the Gaussian Process Factorization Machines,

a novel latent factors based approach for context-aware rec-
ommendations. The utility of an item under a context is
modeled as functions in the latent feature space of the item
and context. By introducing Gaussian processes as pri-
ors for these utility functions, GPFM allows complex, non-
linear user-item-context interactions to be captured lead-
ing to powerful and flexible modeling capacity. Learning in
GPFM is carried out with stochastic gradient descent that
scales linearly with the total number of observations and
thus making GPFM scalable to large datasets. We also de-
rive a pairwise preference variant of GPFM by changing its
covariance function, which can be used seamlessly to deal
with implicit feedback.

7. ACKNOWLEDGMENTS
The work leading to these results has received partial

funding from the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no 610594
(CrowdRec). We would like to thank Edwin V. Bonilla for
helpful discussions and the anonymous reviewers for their
constructive feedback.



Table 4: Performance comparison on the 3 implicit feedback datasets.
food frappe comoda

method ERR@10 MAP@10 ERR@10 MAP@10 ERR@10 MAP@10
gppw 0.3888 0.5555 0.3814 0.6067 0.3580 0.6015
gpfm 0.3745 0.5089 0.3831 0.6067 0.1021 0.0926
fm 0.3659 0.4638 0.3937 0.6024 0.1200 0.1224
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